Все об электростанциях


 


Автоматическое гашение поля (АГП) генераторов



Гашением поля называется процесс, заключающийся в быстром уменьшении магнитного потока возбуждения генератора до величины, близкой к нулю. При этом соответственно уменьшается ЭДС генератора.

Гашение магнитного поля приобретает особое значение при аварийных режимах, вызванных повреждениями внутри самого генератора или на его выводах.

Короткие замыкания внутри генератора обычно происходят через электрическую дугу - именно это обстоятельство обусловливает значительное повреждение обмоток статора и активной стали. Это тем более вероятно, что ток IК> при внутреннем повреждении может быть больше тока при коротком замыкании на выводах генератора. В таком случае быстрое гашение поля генератора необходимо, чтобы ограничить размеры аварии и предотвратить выгорание обмотки и стали статора.

Таким образом, при внутренних коротких замыканиях в генераторах необходимо не только отключить их от внешней сети, но и быстро погасить магнитное поле возбуждения, что приведет к уменьшению ЭДС генератора и погасанию дуги.

Для гашения поля необходимо отключить обмотку ротора генератора от возбудителя. Однако при этом вследствие большой индуктивности обмотки ротора на ее зажимах могут возникнуть большие перенапряжения, способные вызвать пробой изоляции. Поэтому гашение поля нужно выполнять таким образом, чтобы одновременно с отключением возбудителя происходило быстрое поглощение энергии магнитного поля обмотки ротора генератора, так чтобы перенапряжения на ее зажимах не превышали допустимого значения.

В настоящее время в зависимости от мощности генератора и особенностей его системы возбуждения используются три способа гашения магнитного поля:

  • замыкание обмотки ротора на гасительное (активное) сопротивление;
  • включение в цепь обмотки ротора дугогасительной решетки быстродействующего автомата;
  • противовключение возбудителя.

В первых двух способах предусматривается осуществление необходимых переключений в цепях возбуждения с помощью специальных коммутационных аппаратов, которые называют автоматами гашения поля (АГП).

При замыкании обмотки ротора генератора на специальное сопротивление процесс гашения магнитного поля сильно затягивается, поэтому в настоящее время наибольшее распространение получил более действенный способ гашения магнитного поля генератора при помощи АГП с дугогасительной решеткой (рис.1).


Схема электрических цепей при гашении поля генератора автоматом с дугогасящей решеткой

Рис.1. Схема электрических цепей при гашении поля
генератора автоматом с дугогасящей решеткой


При коротком замыкании в генераторе реле защиты KL срабатывает и своими контактами отключает генератор от внешней сети, воздействуя на электромагнит отключения YAT выключателя, а также подает импульс на отключение АГП.

Автомат имеет рабочие 2 и дугогасительные 1 контакты, которые при нормальной работе генератора замкнуты. Контакты 3 АГП вводят при отключении автомата добавочное сопротивление RД в цепь возбуждения возбудителя, снижая ток возбуждения последнего. АГП снабжен решеткой из медных пластин 4 при расстоянии между ними 1,5-3 мм.

При отключении автомата сначала размыкаются рабочие контакты, а затем дугогасительные, причем дуга, возникающая на них, затягивается с помощью магнитного дутья в дугогасительную решетку и разбивается на ряд последовательных коротких дуг.

Короткая дуга является нелинейным активным сопротивлением, падение напряжения на котором сохраняется практически постоянным, равным 25-30 В, несмотря на изменение тока в дуге в широких пределах.

Общее падение напряжения на дуге равно:

UД = nUK (1)

где UK - напряжение на короткой дуге;
n - число последовательных дуговых промежутков в решетке.

Таким образом, в момент вхождения дуги в решетку автомата напряжение на ней сразу возрастает до UД и практически остается неизменным до погасания дуги.

Число пластин в решетке выбирается таким, чтобы UД превосходило Uf,пот - потолочное напряжение возбудителя. При этом дуга существует, пока имеется запас энергии магнитного поля обмотки возбуждения генератора.

Если пренебречь падением напряжения в активном сопротивлении обмотки ротора, что допустимо для крупных синхронных генераторов, то уравнение переходного процесса примет следующий вид:

(2)

Электродвижущая сила самоиндукции обмотки возбуждения при изменении тока if равна Ldif/dt. Она определит разность потенциалов на обмотке ротора. Чем выше скорость изменения тока dif/dt, тем больше ЭДС самоиндукции. По условию электрической прочности изоляции обмотки ротора эта ЭДС не должна превышать Um. Так как в процессе гашения имеет практически постоянное значение, то уравнение (2) при условии максимальной скорости гашения поля во все время переходного процесса будет иметь вид:

Um + UД = Uf (3)

При этом следует иметь в виду, что в течение периода гашения поля Uf практически не изменяется.

Следовательно, в процессе гашения поля генератора разрядом на дугогасительную решетку напряжение на обмотке ротора будет иметь постоянное значение, в пределе равное Um. Ток в обмотке ротора if будет изменяться с постоянной скоростью, так как

(4)




Процесс изменения тока и напряжения в обмотке ротора при гашении магнитного поля

Рис.2. Процесс изменения тока и напряжения
в обмотке ротора при гашении магнитного поля


Время гашения поля с использованием описанной выше схемы составляет 0,5-1 с. Процесс изменения тока в обмотке ротора и напряжения на ее зажимах представлен на рис.2. В данном случае условия гашения поля близки к оптимальным.

При гашении поля, создаваемого небольшим током, дуга в промежутках между пластинами горит неустойчиво, особенно при подходе тока к нулевому значению. Из-за погасания дуги в одном из промежутков обрывается вся цепь тока, что сопровождается перенапряжениями в цепи возбуждения.

Для того чтобы подход тока к нулевому значению был плавным, решетка шунтируется специальным набором сопротивлений 5 (см. рис.1). При такой схеме дуга гаснет не вся сразу, а по секциям, что способствует уменьшению перенапряжений.

В настоящее время отечественные заводы изготовляют АГП данной конструкции на номинальные токи 300-6000 А.

Таблица 1

Технические данные АГП

Технические данные АГП


В табл.1 приведены основные параметры АГП для крупных синхронных машин.

Гашение поля противовключением возбудителя применяется обычно для генераторов с тиристорным возбуждением. При этом (рис.3) отключается автомат гашения поля и главные вентили переводятся в инверторный режим. Магнитное поле подвозбудителя гасится после гашения поля главного генератора за счет инвертирования выпрямителей, питающих его обмотку возбуждения. Если последний процесс будет неуспешным, то поле гасится с помощью сопротивления Rг, включаемого контактом 5. Время гашения поля основного генератора может быть очень малым, но принимается таким как и в предыдущем случае, чтобы избежать чрезмерных перенапряжений в обмотке возбуждения.


Гашение поля при независимом тиристорном возбуждении генератора

Рис.3. Гашение поля при независимом тиристорном возбуждении генератора
1 - АГП, 2 - ввод резервного возбуждения,
3 - главный тиристорный возбудитель,
4 - тиристорный возбудитель вспомогательного генератора,
5 - контакты гашения поля (Rг - сопротивление гашения поля)